College of Electronic Technology-Tripoli

Final-exam -Term: Spring 2020

Department: Communication Engineering

Subject: Dynamic Systems & Control

Semester: 5th

Examiner: Dr. Mosa Abdesalam

Marks: 40.

Allowed Time: 2.00 hrs.

Problem 1: Transfer Function for RLC (10 points)

The network shown in Figure below. Assume that $v_i(t)$ is the input and $v_o(t)$ is the output. The output is the voltage through L_2 as shown in the figure as $(+V_L(t)-)$.

1. Find the transfer function representation. (5 points)

2. Find the inverse Laplace transform of the $v_o(t)$. First, perform the partial fraction expansion on $v_o(s)$, where the input is unit step response $(v_i(s) = \frac{1}{s})$. (5 points)

Problem 2: signal flow graph. (10 points)

Determine the transfer function (C(s)/R(s)) for the block diagram below by signal flow graph techniques. (3 point-chang +7 point Mason's gain formula)

Problem 3: First Order Systems. (10 points)

Find the transfer function, $V_o(s)/V_i(s)$, for the circuit in Figure below. Where $R = 1 \Omega$, and L = 1H.

Do the following:

- 1. Determine the transfer function $\frac{C(s)}{R(s)} = V_o(s)/V_i(s)$.
- 2. Draw the step response of the network. Where the input is unit step response $(R(s) = \frac{1}{s})$.
- 3. Determine the values of time constant, rise time, settling time, and steady state error.
- 4. For the system shown figure below evaluate the static error constants K_p , K_v and K_a and find the expected steady state errors for the unit step, ramp and parabolic inputs.

FIGURE RL network

Problem 4: Second Order Systems. (10 points)

- 1. For the system shown in Figure below, determine the values of gain K_1 and K_2 so that the maximum overshoot in the unit-step response is 0.163 and the peak time is 2 sec. With these values of K_1 and K_2 , obtain the rise time, settling time 2%, 5%, β and W_d .
- 2. Determine the static error constants K_p , K_v and K_a and find the expected steady state errors for the unit step, ramp and parabolic inputs.

Good Luck.