

Time: 120 minutes

Final Exam

Total Marks is (60)

Student Name: _____ Student ID:

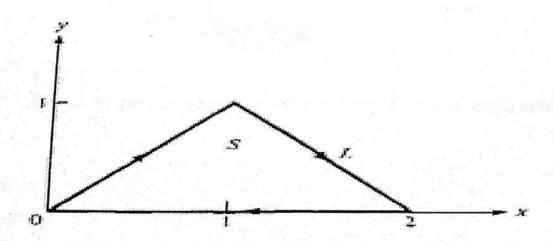
Answer these questions as the best of your knowledge

Q1)

(15 marks)

- a) State Maxwell's equations for static EM fields?
- b) Find the maximum rate of change in scalar field:

$$W = 10 r \sin^2 \theta \cos \emptyset$$


c) What is the meaning of the vector if it is solenoidal? and potential?

Q2)

(15 marks)

Given that $F = x^2 y a_x - y a_y$ Find:

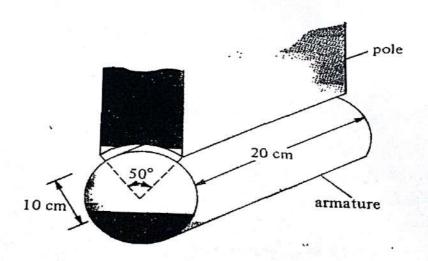
- a) $\oint_{\mathcal{L}} F. dl$ where L is shown in Figure.
- b) $\int_{\mathcal{S}} (\nabla X F) . dS$ where S is the area bounded by L.
- c) Is Stokes's theorem satisfied?

Q3)

In a certain region, the electric field is given by

$$\mathbf{D} = 2\rho(z+1)\cos\phi \,\mathbf{a}_{\rho} - \rho(z+1)\sin\phi \,\mathbf{a}_{\phi} + \rho^2\cos\phi \,\mathbf{a}_{z} \,\mu\text{C/m}^2$$

- (a) Find the charge density.
- (b) Calculate the total charge enclosed by the volume $0 < \rho < 2, \ 0 < \phi < \pi/2,$ 0 < z < 4.
- (c) Confirm Gauss's law by finding the net flux through the surface of the volume in (b).


Q4)

: 1 <

(15 marks)

The electric motor shown in Figure

$$\mathbf{H} = \frac{10^6}{\rho} \sin 2\phi \ \mathbf{a}_{\rho} \ \mathrm{A/m}$$

- Calculate the flux per pole passing through the air gap if the axial length of the pole is (a)
- (b) Determine J at (1, 45, 0)
- (c) Determine B

End of the questions